01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA LOCATION.--Lat $40^{\circ}09^{\circ}05^{\circ}$, long $75^{\circ}36^{\circ}06^{\circ}$, Chester County, PA, Hydrologic Unit 02040203, on right bank 70 ft down- two-span county bridge on French Creek Road, 4.5 mi northwest of Phoenixville, and 7.3 mi upstream from mouth. DRAINAGE AREA.--59.1 mi 2 . PERIOD OF RECORD. -- October 1968 to current year. PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: November 1998 to August 1999. INSTRUMENTATION.--Water-temperature data logger (in situ system; measurements recorded every 15 or 30 minutes) located at gage. REMARKS.--These samples were collected as part of the Delaware River Basin National Water Quality Assessment Program (NAWQA). Fish tissue, bed sediment, and fish community data for this site are presented on page 463. Interruptions in the daily record were due to instrument vandalism or malfunction. For the definitions of the type of quality-control data listed under SAMPLE TYPE, refer to "Quality-control data" in the "Explanation of Records" section. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 | | DATE | TIME | SAME
TYF | Έ | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECOND | E, METRI
PRES-
SURE
(MM
OF
HG) | C DIS- SOLVI (PER- CENT SATUR- ATION) | ED OXYGEN, DIS- SOLVED (MG/L) | PH
WATH
WHOI
FIELD
(STAND-
ARD
UNITS) | CON-
CON-
DUCT-
ANCE
(US/CM) | IC
TEMPER-
ATURE
AIR
(DEG C) | TEMPER-
ATURE
WATER
(DEG C) | |--------|--|---|--|--|--|---|---|--|---|---|--|--| | | | | | (| 00061) | (00025) | (00301) | (00300) | (00400) | (00095) | (00020) | (00010) | | | NOV 1998 | | | | | | | | | | | | | | 04
04 | 1145
1200 | FIELD B ENVIRON | | 22 |
760 | 104 | 12.0 |
7.9 |
172 |
9.5 | 7.5 | | | DEC
09 | 1550 | ENVIRON | | 28 | 765 | 104 | 11.9 | 8.4 | 167 | 12.0 | 8.5 | | | JAN 1999 | 1330 | ENVIRON | MENIAL | 26 | 703 | 102 | 11.9 | 0.1 | 107 | 12.0 | 0.5 | | | 12
FEB | 1500 | ENVIRON | MENTAL | 94 | 757 | 96 | 14.0 | 7.7 | 187 | 1.0 | .0 | | | 03 | 1430 | ENVIRON | MENTAL | 114 | 760 | 100 | 12.6 | 7.5 | 139 | 13.0 | 5.5 | | | MAR
03 | 1410 | ENVIRON | мемтат. | 56 | 746 | 107 | 12.8 | 7.8 | 151 | 17.0 | 7.0 | | | 03
APR | 1411 | | PEPLICATE | | | | | | | | | | | 07
MAY | 1410 | ENVIRON | MENTAL | 55 | 757 | 112 | 11.0 | 8.0 | 151 | 22.0 | 16.0 | | | 05
JUN | 1330 | ENVIRON | MENTAL | 45 | 750 | 114 | 10.4 | 8.0 | 151 | 24.5 | 19.0 | | | 02
JUL | 1430 | ENVIRON | MENTAL | 27 | 755 | 133 | 11.0 | 8.2 | 162 | 29.5 | 24.5 | | | 01
AUG | 1340 | ENVIRON | MENTAL | 15 | 758 | | | 8.2 | 161 | 26.0 | 23.0 | | | 04 | 1430 | ENVIRON | | 7.2 | | | | 8.6 | 163 | 32.5 | 25.0 | | | 31
SEP | 0740 | ENVIRON | MENTAL | 10 | 764 | | | 7.8 | 194 | 19.5 | 17.0 | | | 16 | 1820 | ENVIRON | MENTAL | 9370 | 738 | | 8.9 | 7.3 | 64 | 16.5 | ANC | | | | | | | | | HARD- | CALCTIIM | MAGNE- | POTAS- | | UNFLTRD | LINITY | BONATE | BONATE | CHLO- | FLUO- | | | | HARD-
NESS
TOTAL | CALCIUM
DIS- | MAGNE-
SIUM,
DIS- | | SODIUM,
DIS- | UNFLTRD | LINITY | | | | FLUO-
RIDE,
DIS- | | | | NESS
TOTAL
(MG/L | DIS-
SOLVED | SIUM,
DIS-
SOLVED | SIUM,
DIS-
SOLVED | SODIUM,
DIS-
SOLVED | UNFLTRD
TIT 4.5
LAB
(MG/L | LINITY WAT DIS TOT IT FIELD | BONATE
WATER
DIS IT
FIELD | BONATE
WATER
DIS IT
FIELD | CHLO-
RIDE,
DIS-
SOLVED | RIDE,
DIS-
SOLVED | | | DATE | NESS
TOTAL
(MG/L
AS | DIS-
SOLVED
(MG/L | SIUM,
DIS-
SOLVED
(MG/L | SIUM,
DIS-
SOLVED
(MG/L | SODIUM,
DIS-
SOLVED
(MG/L | UNFLTRD
TIT 4.5
LAB
(MG/L
AS | LINITY WAT DIS TOT IT FIELD MG/L AS | BONATE
WATER
DIS IT
FIELD
MG/L AS | BONATE
WATER
DIS IT
FIELD
MG/L AS | CHLO-
RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | | | DATE | NESS
TOTAL
(MG/L | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | SODIUM,
DIS-
SOLVED | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | BONATE WATER DIS IT FIELD MG/L AS HCO3 | BONATE WATER DIS IT FIELD MG/L AS CO3 | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | | (00950 | | NESS
TOTAL
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | BONATE WATER DIS IT FIELD MG/L AS HCO3 | BONATE WATER DIS IT FIELD MG/L AS CO3 | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | | (00950 |)) | NESS
TOTAL
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | BONATE WATER DIS IT FIELD MG/L AS HCO3 | BONATE WATER DIS IT FIELD MG/L AS CO3 | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | | (00950 | | NESS
TOTAL
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | BONATE WATER DIS IT FIELD MG/L AS HCO3 | BONATE WATER DIS IT FIELD MG/L AS CO3 | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | | (00950 | NOV 1998
04
04
DEC | NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
5) (00930 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
() (9041) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 0) (3908 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
6) (0045 | BONATE WATER DIS IT FIELD MG/L AS CO3 53) (0045 | CHLO-
RIDE,
SIDS-
SOLVED
(MG/L
AS CL)
52) (009- | RIDE,
DIS-
SOLVED
(MG/L
AS F)
40) | | (00950 | NOV 1998
04
04 | NESS
TOTAL
(MG/L
AS
CACC3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
5) (00930 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
() (9041 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 0) (3908 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
6) (0045 | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
53) (0045 | CHLO-RIDE, DIS-SOLVED (MG/L AS CL) (009- | RIDE,
DIS-
SOLVED
(MG/L
AS F)
40) | | (00950 | NOV 1998
04
04
DEC
09 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
5) (00930 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
() (9041 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 0) (3908 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
6) (004! | BONATE WATER DIS IT FIELD MG/L AS CO3 53) (0049 | CHLO-RIDE, DIS-SOLVED (MG/L AS CL) 52) (009- | RIDE,
DIS-
SOLVED
(MG/L
AS F)
40) | | (00950 | NOV 1998
04
04
DEC
09
JAN 1999
12 | NESS
TOTAL
(MG/L
AS
CACC3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
5) (00930 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
() (9041 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 0) (3908 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
6) (0045 | BONATE WATER DIS IT FIELD MG/L AS CO3 53) (0045 | CHLO-RIDE, DIS-SOLVED (MG/L AS CL) (009- | RIDE,
DIS-
SOLVED
(MG/L
AS F)
40) | | (00950 | NOV 1998
04
04
DEC
09
JAN 1999
12
FEB
03
MAR
03 | NESS
TOTAL
(MG/L
AS
CACC3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) |
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
5) (00930 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
() (9041 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 0) (3908 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
6) (004! | BONATE WATER DIS IT FIELD MG/L AS CO3 53) (0049 | CHLO-RIDE, DIS-SOLVED (MG/L AS CL) 52) (009- | RIDE,
DIS-
SOLVED
(MG/L
AS F)
40) | | (00950 | NOV 1998
04
04
DEC
09
JAN 1999
12
FEB
03
MAR
03
APR
07 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935

1.7
1.6
2.8
1.9 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
5) (00930 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
() (9041) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 0) (3908 | BONATE WATER TO STAND | BONATE WATER DIS IT FIELD MG/L AS CO3 53) (0049 | CHLO-
RIDE,
DIS-
SOLVED (MG/L
AS CL)
52) (009- | RIDE,
DIS-
SOLVED (MG/L
AS F)
40) | | (00956 | NOV 1998
04
04
DEC
09
JAN 1999
12
FEB
03
MAR
03
APR
07
MAY | NESS
TOTAL
(MG/L
AS
CACCO3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)

5.4
4.6
4.8
4.0
4.2
4.4 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935

1.7
1.6
2.8
1.9 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
5) (00930

7.5
7.2
12
7.7
7.6
7.9 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
() (9041) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 0) (3908 | BONATE WATER DIS IT FIELD MG/L AS HCO3 6) (0045 61 54 36 28 34 | BONATE WATER DIS IT FIELD MG/L AS CO3 53) (0045 | CHLO-RIDE, RIDE, DIS-SOLVED (MG/L AS CL) 52) (009- 12 11 21 14 14 14 14 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
40) | | (00950 | NOV 1998
04
04
DEC
09
JAN 1999
12
FEB
03
MAR
03
APR
07
MAY
05
JUN | NESS
TOTAL
(MG/L
AS
CACC3)
(00900)

66
56
54
43
48
50
51 | DIS-
SOLVED
(MG/L
AS CA)
(00915)

17
15
14
11
12
13
13 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)

5.4
4.6
4.8
4.0
4.2
4.4
4.4 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935

1.7
1.6
2.8
1.9
1.5
1.6
1.3 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
5) (00930

7.5
7.2
12
7.7
7.6
7.9
7.3 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) () (9041) 50 46 31 24 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 0) (3908 | BONATE WATER TO MATER | BONATE WATER DIS IT FIELD MG/L AS CO3 53) (004! | CHLO-RIDE, RIDE, DIS-SOLVED (MG/L AS CL) 52) (009- 12 11 21 14 14 14 12 | RIDE,
DIS-
SOLVED (MG/L
AS F)
40)

<.1
<.1
<.1
<.1
<.1
<.1 | | (00950 | NOV 1998
04
04
DEC
09
JAN 1999
12
FEB
03
MAR
03
APR
07
MAY | NESS
TOTAL
(MG/L
AS
CACC3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915)

17
15
14
11
12
13 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)

5.4
4.6
4.8
4.0
4.2
4.4 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935

1.7
1.6
2.8
1.9
1.5
1.6 | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
5) (00930

7.5
7.2
12
7.7
7.6
7.9 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (9041) 50 46 31 24 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 0) (3908 | BONATE WATER TO MATER | BONATE WATER DIS IT FIELD MG/L AS CO3 53) (0049 | CHLO-RIDE, RIDE, DIS- SOLVED (MG/L AS CL) 52) (009- 12 11 21 14 14 14 12 11 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
40)

<.1
<.1
<.1
<.1
<.1
<.1 | | AUG | | | | | | | | | | | |-----|----|-----|-----|-----|-----|--------|----|---|-----|-----| | 04 | 61 | 17 | 4.8 | 1.5 | 7.2 |
49 | 55 | 3 | 11 | <.1 | | 31 | 69 | 18 | 5.6 | 2.0 | 8.3 |
47 | 57 | | 13 | <.1 | | SEP | | | | | | | | | | | | 16 | 16 | 4.0 | 1.6 | 2.9 | 1.7 |
13 | 15 | | 2.6 | .1 | ## 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 | (00671) | DATE | SOLVED
(MG/L
AS
SIO2) | | AMMONIA I
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA + N
ORGANIC
DIS.
(MG/L
AS N)
(00623) | MONIA + ORGANIC TOTAL (MG/L AS N) | (MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0) (0061 | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | (MG/L
AS P) | |---|--|--|--|--|--|--|---|--|--|---|---|--| | | | | | | | | | | | | | | | Ŋ | 04 | | | | | | | | | | | | | | 04
DEC | 15 | 12 | <.02 | .1 | .2 | .93 | .82 | 1.0 | <.01 | <.05 | <.01 | | | 09
JAN 1999 | 13 | 12 | <.02 | .2 | .2 | 1.2 | 1.0 | 1.2 | <.01 | <.05 | .01 | | | 12
FEB | 14 | 15 | .08 | .3 | .5 | 2.0 | 1.6 | 2.1 | <.01 | .051 | .04 | | | 03
MAR | 12 | 14 | .04 | .3 | .4 | 1.5 | 1.1 | 1.5 | .01 | .032 | .02 | | P | 03 | 13 | 14 | <.02 | .2 | .2 | 1.7 | 1.5 | 1.7 | .01 | .012 | <.01 | | Z | 03
APR | 13 | 14 | <.02 | . 2 | . 2 | 1.6 | 1.5 | 1.7 | .02 | .012 | .01 | | N | 07
MAY | 13 | 12 | <.02 | .2 | .2 | 1.3 | 1.1 | 1.4 | <.01 | .015 | <.01 | | ā | 05
IUN | 11 | 12 | .05 | .2 | .3 | 1.5 | 1.3 | 1.5 | <.01 | .015 | .02 | | | 02 | 16 | 14 | .03 | .2 | .2 | 1.6 | 1.3 | 1.5 | .01 | .03 | .03 | | | 01
AUG | 15 | 11 | .02 | .2 | .2 | .99 | .82 | 1.0 | .01 | .025 | .03 | | - | 04 | 16 | 9.2 | <.02 | .2 | .2 | .46 | .28 | .51 | <.01 | .026 | .02 | | s | 31
SEP | 16 | 20 | <.02 | .2 | .2 | .82 | .62 | .82 | <.01 | .025 | .02 | | | 16 | 3.6 | 5.9 | .06 | .3 | 1.2 | 1.4 | 1.1 | 2.2 | .01 | .14 | .12 | | | | | | COT TDC | TUR- | | | | | 61. D.D. | | | | (80154) | DATE | PHORUS
TOTAL
(MG/L
AS P) | AT 180
DEG. C
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(MG/L) | ITY
FIELD
WATER
UNFLTRD
(NTU) | AS B) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | SUS-
PENDED
TOTAL
(MG/L
AS C) | NIC MENT DIS- CHARGE, SUS- PENDED | SEDI-
MENT,
SUS-
PENDED
(MG/L) | | | | PHORUS
TOTAL
(MG/L
AS P) | AT 180
DEG. C
DIS-
SOLVED
(MG/L) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | ITY
FIELD
WATER
UNFLTRD
(NTU) | DIS-
SOLVED
(UG/L
AS B) | DIS-
SOLVED
(UG/L
AS FE) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | N, ORGAN SUS- PENDED TOTAL (MG/L AS C) | NIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | | | NOV 1998
04 |
PHORUS
TOTAL
(MG/L
AS P)
(00665) | AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | ITY FIELD WATER UNFLTRD (NTU) (61028) | DIS-
SOLVED
(UG/L
AS B)
(01020) | DIS-
SOLVED
(UG/L
AS FE)
(01046 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
) (01056 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(0068 | N, ORGAN
SUS-
PENDED
TOTAL
(MG/L
AS C)
1) (0068 | DIS- CHARGE, SUS- PENDED (T/DAY) 39) (8015 | SEDI-
MENT,
SUS-
PENDED
(MG/L) | | Ŋ | 10V 1998 | PHORUS
TOTAL
(MG/L
AS P)
(00665) | AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | ITY FIELD WATER UNFLTRD (NTU) (61028) | DIS-
SOLVED
(UG/L
AS B)
(01020) | DIS-
SOLVED
(UG/L
AS FE)
(01046 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
) (01056 | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | N, ORGAN
SUS-
PENDED
TOTAL
(MG/L
AS C)
1) (0068 | DIS- CHARGE, SUS- PENDED (T/DAY) 39) (8015 | SEDI-
MENT,
SUS-
PENDED
(MG/L)
5) | | ı | NOV 1998
04
04
DEC
09
JAN 1999 | PHORUS
TOTAL
(MG/L
AS P)
(00665) | AT 180 DEG. C DIS- SOLVED (MG/L) (70300) | CONSTITUENTS, DIS- SOLVED (MG/L) (70301) | ITY FIELD WATER UNFLTRD (NTU) (61028) | DIS-
SOLVED
(UG/L
AS B)
(01020) | DIS-
SOLVED
(UG/L
AS FE)
(01046 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
) (01056 | ORGANIC DIS-
SOLVED (MG/L AS C) (0068 | N, ORGAN SUS- PENDED TOTAL (MG/L AS C) 1) (0068 | NIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) 39) (8015 | SEDI-
MENT,
SUS-
PENDED
(MG/L)
5) | | I
J | NOV 1998
04
04
DEC
09
JAN 1999
12
FEB | PHORUS TOTAL (MG/L AS P) (00665) <.05 <.05 | AT 180 DEG. C DIS- SOLVED (MG/L) (70300) | CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 104 96 108 | ITY FIELD WATER UNFLTRD (NTU) (61028) | DIS-
SOLVED
(UG/L
AS B)
(01020)

E12.4
E7.5 | DIS-
SOLVED
(UG/L
AS FE)
(01046 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
) (01056 | ORGANIC DIS- SOLVED (MG/L AS C)) (0068 | N, ORGAN SUS-PENDED TOTAL (MG/L AS C) 1) (0068 | NIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) (9) (8015 | , SEDI-
MENT,
SUS-
PENDED
(MG/L)
5) | | I
C | 04
04
05
09
12
12
12
13
14
15
16
17
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18 | PHORUS
TOTAL
(MG/L
AS P)
(00665)

<.05
<.05
.077 | AT 180 DEG. C DIS- SOLVED (MG/L) (70300) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | ITY FIELD WATER UNFLIRD (NTU) (61028) 0 .4 20 20 | DIS-
SOLVED
(UG/L
AS B)
(01020)
E12.4
E7.5
9.6
<16.0 | DIS-
SOLVED
(UG/L
AS FE)
(01046 | NESE,
DIS-
SOLVED
(UG/L
AS MN)) (01056 | ORGANIC DIS- SOLVED (MG/L AS C)) (0068 | N, ORGAN
SUS-
PENDED
TOTAL
(MG/L
AS C)
1) (0068 | NIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) 39) (8015 | , SEDI-
MENT,
SUS-
PENDED
(MG/L)
5) | | I
C
F | 04
04
04
DEC
09
JAN 1999
12
FEB
03
4AR
03 | PHORUS TOTAL (MG/L AS P) (00665) <.05 <.05 | AT 180 DEG. C DIS- SOLVED (MG/L) (70300) | CONSTITUENTS, DIS- SOLVED (MG/L) (70301) 104 96 108 | ITY FIELD WATER UNFLTRD (NTU) (61028) | DIS-
SOLVED
(UG/L
AS B)
(01020)

E12.4
E7.5 | DIS-
SOLVED
(UG/L
AS FE)
(01046 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
) (01056 | ORGANIC DIS- SOLVED (MG/L AS C)) (0068 | N, ORGAN SUS-PENDED TOTAL (MG/L AS C) 1) (0068 | NIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) (9) (8015 | , SEDI-
MENT,
SUS-
PENDED
(MG/L)
5) | | I
C
F
N | 04 04 05 09 JAN 1999 12 7EB 03 MAR 03 APR 07 | PHORUS
TOTAL
(MG/L
AS P)
(00665)

<.05
<.05
.077
.063 | AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 110 125 100 100 | CONSTI-
TUENTS,
DIS-
SOLVED (MG/L) (70301)

104
96
108
84
89 | ITY FIELD WATER UNFLTRD (NTU) (61028) 0 .4 20 20 3 | DIS-
SOLVED
(UG/L
AS B)
(01020)

E12.4
E7.5
9.6
<16.0 | DIS-
SOLVED
(UG/L
AS FE)
(01046 | NESE,
DIS-
SOLVED
(UG/L
AS MN)) (01056 | ORGANIC DIS- SOLVED (MG/L AS C)) (0068 <1 1.9 1.8 4.1 5.2 2.5 | N, ORGAN
SUS-
PENDED
TOTAL
(MG/L
AS C)
1) (0068 | NIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) 9) (8015 | , SEDI-
MENT,
SUS-
PENDED
(MG/L)
5) | | I
C
E
D | 04 04 05 09 12 12 12 13 14 16 17 18 | PHORUS TOTAL (MG/L AS P) (00665) <.05 <.05 .077 .063 .025 .026 | AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 110 125 100 100 102 | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | ITY FIELD WATER UNFLIRD (NTU) (61028) 0 .4 20 20 3 | DIS-
SOLVED
(UG/L
AS B)
(01020)

E12.4
E7.5
9.6
<16.0
<16.0 | DIS-
SOLVED
(UG/L
AS FE)
(01046 | NESE,
DIS-
SOLVED
(UG/L
AS MN)) (01056 | ORGANIC DIS- SOLVED (MG/L AS C)) (0068 <.1 1.9 1.8 4.1 5.2 2.5 | N, ORGAN SUS-PENDED TOTAL (MG/L AS C) 1) (0068 | NIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) 39) (8015 | , SEDI-
MENT,
SUS-
PENDED
(MG/L)
5) | | I
C
E
D | 04 04 05EC 09 JAN 1999 12 FEB 03 4AR 03 07 4AY | PHORUS TOTAL (MG/L AS P) (00665) <.05 <.05 .077 .063 .025 .026 | AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 110 125 100 100 102 97 | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)

104
96
108
84
89

88 | ITY FIELD WATER UNFLIRD (NTU) (61028) 0 .4 20 20 3 4 | DIS-
SOLVED
(UG/L
AS B)
(01020)

E12.4
E7.5
9.6
<16.0
<16.0 | DIS-
SOLVED
(UG/L
AS FE)
(01046

30
54
75
94
62
64
84 | NESE,
DIS-
SOLVED
(UG/L
AS MN))
(01056 | ORGANIC DIS- SOLVED (MG/L AS C)) (0068 <.1 1.9 1.8 4.1 5.2 2.5 2.3 | N, ORGAN SUS- PENDED TOTAL (MG/L AS C) 1) (0068 | NIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) 99) (8015 | , SEDI-MENT, SUS-PENDED (MG/L) 5) 8 1 8 10 3 6 | | I
C
E
D | 04 04 05 09 JAN 1999 12 7EB 03 MAR 07 APR 05 JUN 1998 | PHORUS TOTAL (MG/L AS P) (00665) <.05 <.05 .077 .063 .025 .026 .025 | AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 110 125 100 100 102 97 | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)

104
96
108
84
89

88
86 | ITY FIELD WATER UNFLTRD (NTU) (61028) 0 .4 20 20 3 4 3 | DIS-
SOLVED
(UG/L
AS B)
(01020)
E12.4
E7.5
9.6
<16.0
<16.0
E9.2
E7.8 | DIS-
SOLVED
(UG/L
AS FE)
(01046

30
54
75
94
62
64
84
76 | NESE,
DIS-
SOLVED
(UG/L
AS MN)) (01056 | ORGANIC DIS- SOLVED (MG/L AS C)) (0068 <1 1.9 1.8 4.1 5.2 2.5 2.3 1.9 | N, ORGAN SUS- PENDED TOTAL (MG/L AS C) 1) (0068 | MIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) 99) (8015 | , SEDI-MENT, SUS-PENDED (MG/L) 5) 8 1 8 10 3 6 6 | | | 04 04 05EC 09 TAN 1999 12 FEB 03 MAR 03 03 APR 07 APR 05 JUN 02 JUL | PHORUS TOTAL (MG/L AS P) (00665) <.05063 .025 .026 .025 .026 .046 | AT 180 DEG. C
DIS- SOLVED (MG/L) (70300) 114 110 125 100 100 102 97 101 124 | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)

104
96
108
84
89

88
86 | ITY FIELD WATER UNFLIRD (NTU) (61028) 0 .4 20 20 3 4 3 4 | DIS-
SOLVED
(UG/L
AS B)
(01020)

E12.4
E7.5
9.6
<16.0
<16.0
E9.2
E7.8
E11.9 | DIS- SOLVED (UG/L AS FE) (01046 30 54 75 94 62 64 84 76 79 | NESE,
DIS-
SOLVED
(UG/L
AS MN)) (01056 | ORGANIC DIS- SOLVED (MG/L AS C)) (0068 <.1 1.9 1.8 4.1 5.2 2.5 2.3 1.9 1.9 | N, ORGAN SUS- PENDED TOTAL (MG/L AS C) 1) (0068 | MIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) 39) (8015 | SEDI-
MENT,
SUS-
PENDED
(MG/L)
5) | | I C C C C C C C C C C C C C C C C C C C | 04 04 04 09 JAN 1999 12 FEB 03 4AR 03 07 4DPR 05 JUL 01 AUG | PHORUS TOTAL (MG/L AS P) (00665) <.05 <.05 .077 .063 .025 .026 .026 .046 .045 | AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 114 110 125 100 100 102 97 101 124 119 | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)

104
96
108
84
89

88
86
100
97 | ITY FIELD WATER UNFLIRD (NTU) (61028) 0 .4 20 20 3 4 3 4 3 4 3 | DIS-
SOLVED
(UG/L
AS B)
(01020)

E12.4
E7.5
9.6
<16.0
<16.0
E9.2
E7.8
E11.9 | DIS- SOLVED (UG/L AS FE) (01046 30 54 75 94 62 64 84 76 79 58 | NESE, DIS- SOLVED (UG/L AS MN)) (01056 7 <3 20 16 10 10 8 6 9 | ORGANIC DIS- SOLVED (MG/L AS C)) (0068 <.1 1.9 1.8 4.1 5.2 2.5 2.3 1.9 1.9 2.1 | N, ORGAN SUS- PENDED TOTAL (MG/L AS C) (0068) | NIC MENT DIS- CHARGE, SUS- PENDED (T/DAY) 99) (8015 | , SEDI-
MENT,
SUS-
PENDED
(MG/L)
5) | WATER-COLUMN VOLATILE ORGANIC COMPOUND ANALYSES. Selected samples were analyzed for volatile organic compounds (VOCs) on schedule 2020 (listed with minimum reporting levels in "Explanation of Records" section). Only VOCs identified by the analyses in one or more samples are listed in the water-quality tables. | | CARBON | | | | | 1,2,3- | BENZENE | BENZENE | | BENZENE | |------|---------|---|---|---------|---|---------|---|---|---------|---| | | DI- | 1,1,1- | | 1,1-DI- | | TRI- | 123-TRI | 1,2,4- | BENZENE | 135-TRI | | | SULFIDE | TRI- | 1,1-DI- | CHLORO- | ACETONE | CHLORO | METHYL- | TRI- | 124-TRI | METHYL | | | WATER | CHLORO- | CHLORO- | ETHYL- | WATER | BENZENE | WATER | CHLORO- | METHYL | WATER | | | WHOLE | ETHANE | ETHANE | ENE | WHOLE | WAT, WH | UNFLTRD | WAT UNF | UNFILT | UNFLTRD | | TIME | TOTAL | TOTAL | TOTAL | TOTAL | TOTAL | REC | RECOVE | R REC | RECOVE | R REC | | | (UG/L) | | (77041) | (34506) | (34496) | (34501) | (81552) | (77613) | (77221) | (34551) | (77222) | (77226) | | | | | | | | | | | | | | 1330 | <.37 | <.032 | <.066 | <.044 | <5 | <.27 | <.12 | <.19 | <.056 | <.044 | | | | DI- SULFIDE WATER WHOLE TIME TOTAL (UG/L) (77041) | DI- 1,1,1- SULFIDE TRI- WATER CHLORO- WHOLE ETHANE TIME TOTAL TOTAL (UG/L) (UG/L) (77041) (34506) | DI- | DI- 1,1,1- 1,1-DI- SULFIDE TRI- 1,1-DI- CHLORO- WATER CHLORO- CHLORO- ETHYL- WHOLE ETHANE ETHANE ENE TIME TOTAL TOTAL TOTAL TOTAL (UG/L) (UG/L) (UG/L) (UG/L) (77041) (34506) (34496) (34501) | DI- | DI- 1,1,1- 1,1-DI- TRI- SULFIDE TRI- 1,1-DI- CHLORO- ACETONE CHLORO WATER CHLORO- CHLORO- ETHYL- WATER BENZENE WHOLE ETHANE ETHANE ENE WHOLE WAT, WH TIME TOTAL TOTAL TOTAL TOTAL TOTAL REC (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (77041) (34506) (34496) (34501) (81552) (77613) | DI- 1,1,1- 1,1-DI- TRI- 123-TRI SULFIDE TRI- 1,1-DI- CHLORO- ACETONE CHLORO METHYL- WATER CHLORO- CHLORO- ETHYL- WATER BENZENE WATER WHOLE ETHANE ETHANE ENE WHOLE WAT, WH UNFLTRD TIME TOTAL TOTAL TOTAL TOTAL TOTAL REC RECOVE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (77041) (34506) (34496) (34501) (81552) (77613) (77221) | DI | DI- 1,1,1- 1,1-DI- TRI- 123-TRI 1,2,4- BENZENE SULFIDE TRI- 1,1-DI- CHLORO- ACETONE CHLORO METHYL. TRI- 124-TRI WATER CHLORO- CHLORO- ETHYL- WATER BENZENE WATER CHLORO- METHYL WHOLE ETHANE ETHANE ENE WHOLE WAT, WH UNFLTRD WAT UNF UNFILT TIME TOTAL TOTAL TOTAL TOTAL TOTAL REC RECOVER REC RECOVE (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (77041) (34506) (34496) (34501) (81552) (77613) (77221) (34551) (77222) | # 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 | | BENZENE | E BENZENI | E ISO- | | | BENZEN | VE | | | | | |----------|------------------|-----------------------------|----------------|----------------------------|--------------------|--------------------|------------------|---------------|--------------------|--------------|-----------------| | | 1,3-DI- | - 1,4-DI- | | BENZEN | | | | | | CHLO | RO- | | | CHLORO- | CHLORO- | - BENZEN | E N-BUTY | L N-PROP | Y CHLORO |)- | | | DI | - | | | WATER | WATER | WATER | WATER | WATER | WATER | | BROMO- | CHLORO- | BROMO- | CHLORO- | | | UNFLTRD | UNFLTRD | WHOLE | UNFLTRD | UNFLTRD | UNFLTRD | BENZENE | FORM | BENZENE | METHAN | E FORM | | DATE | REC | REC | REC | REC | REC | REC | TOTAL | TOTAL | TOTAL | TOTAL | TOTAL | | | (UG/L) | | (34566) | (34571) | (77223 |) (77342 |) (77224 | (34536 | 5) (3403 | 0) (321 | 04) (3430 | 1) (321 | .05) | | (32106) | MAY 1999 | | | | | | | | | | | | | 05 | <.054 | <.05 | <.032 | <.19 | <.042 | <.048 | <.1 | <.1 | <.028 | <.18 | <.052 | | SEP | | | | | | | | | | | | | 16 | <.054 | <.05 | <.032 | <.19 | <.042 | <.048 | <.1 | <.1 | <.028 | <.18 | <.052 | CIS-1,2 | | | ETHER | | FURAN, | | METHYL | | | METHYL- | | | -DI- | BROMO- | ETHER | TERT- | | TETRA- | ISO- | TERT- | | METHYL | ETHYL- | | | CHLORO- | DI- | ETHYL | PENTYL | | HYDRO- | DURENE | BUTYL | METHYL- | ENE | KETONE | | | ETHENE | CHLORO- | WATER | METHYL | ETHYL- | WATER | WATER | ETHER | CHLO- | CHLO- | WATER | | | WATER | METHANE | UNFLTRD | UNFLTRD | BENZENE | UNFLTRD | | WAT UNF | | RIDE | WHOLE | | DATE | TOTAL | TOTAL | RECOVER | RECOVER | TOTAL | | RECOVER | REC | TOTAL | TOTAL | TOTAL | | | (UG/L) | | (77093) | (32101) |) (81576 |) (50005 |) (34371 | .) (81607 | 7) (5000 | 0) (780) | 32) (3441 | .8) (344 | 23) | | (81595) | MAY 1999 | | | | | | _ | _ | | | | | | 05 | <.038 | <.048 | <.17 | <.11 | <.03 | <9 | <.2 | E.0704 | <.25 | <.38 | <1.6 | | SEP | | | | | | _ | _ | | | | | | 16 | <.038 | <.048 | <.17 | <.11 | <.03 | <9 | <.2 | <.17 | <.25 | <.38 | <1.6 | | | | | | | | | | | | | | | | 34TIM17377 | META/ | 0- | | P-ISO- | | | | | | | | | METHYL | • | | • | | | | mmmp a | mor remark | | mp.T | | | ISO-
BUTYL | PARA-
XYLENE | CHLORO- | O-
XYLENE | PROPYL-
TOLUENE | PREH- | | TETRA- | TOLUENE
O-ETHYL | 5 | TRI-
CHLORO- | | | KETONE | WATER | | | | | | | | | | | | | | WATER
WHOLE | WATER | WATER | WATER | CHILD THE | ETHYL-
ENE | WATER | | ETHYL- | | DATE | WAT.WH.
TOTAL | UNFLTRD
REC | TOTAL | WHOLE
TOTAL | WHOLE
REC | UNFLTRD
RECOVER | STYRENE
TOTAL | TOTAL | UNFLTRD
RECOVER | TOLUEN TOTAL | E ENE
TOTAL | | DATE | (UG/L) | | (UG/L) | (UG/L) | | | | (UG/L) | | (UG/L) | (UG/L) | | | | | | | | | | | 75) (7722 | | | | (39180) | (70133) | (83733) | , (11213 | , (77133 |) (11330 | (43333 | , (//12 | 0) (344 | 13) (1122 | .0) (340 | 10) | | (33100) | | | | | | | | | | | | | MAY 1999 | | | | | | | | | | | | | 05 | <.37 | <.06 | <.042 | <.06 | <.11 | <.23 | <.042 | <.1 | <.1 | E.0554 | E.0188 | | SEP | ~.57 | ~.00 | ~.UIZ | ~.00 | ~ | 25 | ~.012 | ~ | · | 2.0334 | 2.0100 | | 16 | <.37 | <.06 | <.042 | <.06 | <.11 | <.23 | <.042 | <.1 | <.1 | <.05 | <.038 | | | / | | | | ~ • | ~ • 2 3 | | ~•± | ~• ± | ~.05 | 050 | WATER-COLUMN PESTICIDE ANALYSES. Selected samples were analyzed for pesticides on schedule 2001 (listed with minimum reporting levels in "Explanation of Records" section). Only pesticides identified by the analyses in one or more samples are listed in the water-quality tables. | DATE | TIME | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | |-----------
------|--|--|---|---|--|--|--|--|---| | DEC 1998 | | | | | | | | | | | | 09 | 1550 | <.002 | <.002 | .0066 | <.002 | <.003 | <.003 | <.004 | <.004 | <.002 | | JAN 1999 | | | | | | | | | | | | 12 | 1500 | <.002 | <.002 | .0116 | <.002 | E.0070 | <.003 | <.004 | <.004 | <.002 | | FEB
03 | 1430 | <.002 | <.002 | .0104 | <.002 | <.003 | <.003 | <.004 | <.004 | <.002 | | MAR | 1430 | <.002 | <.002 | .0104 | <.002 | <.003 | <.003 | <.004 | <.004 | <.002 | | 03 | 1410 | <.002 | <.002 | .0083 | <.002 | <.003 | <.003 | <.004 | <.004 | <.002 | | APR | | | | | | | | | | | | 07 | 1410 | <.002 | <.002 | .0083 | <.002 | <.003 | <.003 | <.004 | <.004 | <.002 | | MAY | | | | | | | | | | | | 05 | 1330 | <.002 | <.002 | .0095 | <.002 | <.003 | <.003 | <.004 | <.004 | <.002 | | JUN
02 | 1430 | <.002 | <.002 | .0200 | <.002 | <.003 | <.030 | <.004 | <.004 | <.002 | | JUL | 1430 | <.002 | <.002 | .0200 | <.002 | <.003 | <.030 | <.004 | <.004 | <.002 | | 01 | 1340 | <.002 | <.002 | .0130 | <.002 | <.003 | <.003 | <.004 | <.004 | <.002 | | AUG | | | | | | | | | | | | 04 | 1430 | <.002 | <.002 | .0079 | <.002 | <.003 | <.003 | <.004 | <.004 | <.002 | | 31 | 0740 | <.002 | <.002 | .0069 | <.002 | <.003 | <.003 | <.004 | <.004 | <.002 | | SEP | | | | | | | | | | | | 16 | 1820 | <.002 | .0135 | .0221 | <.002 | <.003 | <.003 | <.004 | .0284 | .0040 | # 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 | DATE | DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | |---|--|---|---|---|--|---|--|--|---|--| | DEC 1998 | | | | | | | | | | | | 09
JAN 1999 | E.0265 | <.002 | <.001 | <.002 | <.004 | <.002 | <.005 | <.001 | <.002 | <.004 | | 12
FEB | E.0235 | <.002 | <.001 | <.002 | <.004 | <.002 | <.005 | <.001 | .0155 | <.004 | | 03
MAR | E.0180 | <.002 | <.001 | <.002 | <.004 | <.002 | <.005 | <.001 | .0113 | <.004 | | 03
APR | E.0124 | <.002 | <.001 | <.002 | <.004 | <.002 | <.005 | <.001 | .0067 | <.004 | | 07
MAY | E.0219 | <.002 | <.001 | <.002 | <.004 | <.002 | <.005 | <.001 | .0060 | <.004 | | 05
JUN | E.0292 | <.002 | <.001 | <.002 | <.004 | <.002 | <.005 | <.001 | .0075 | <.004 | | 02
JUL | E.0213 | <.002 | <.001 | <.002 | <.004 | <.002 | <.005 | <.001 | .0082 | <.004 | | 01
AUG | E.0460 | <.002 | <.001 | <.002 | <.004 | <.002 | <.005 | <.001 | .0070 | <.004 | | 04
31 | E.0337
E.0231 | <.002
<.002 | <.001
<.001 | <.002
<.002 | <.004
<.004 | <.002
<.002 | <.005
<.005 | <.001
<.001 | .0046
E.0028 | <.004
<.004 | | SEP
16 | E.0095 | <.002 | <.001 | <.002 | <.004 | <.002 | <.005 | <.001 | .0316 | <.004 | | | | | | | | | | | | | | DATE | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | | DATE | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) | DDE
DISSOLV
(UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | MAZINE,
WATER,
DISS,
REC
(UG/L) | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) | BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | | | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) | DDE
DISSOLV
(UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | MAZINE,
WATER,
DISS,
REC
(UG/L) | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) | BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | | DEC 1998
09
JAN 1999
12 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | DDE
DISSOLV
(UG/L)
(34653) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | | DEC 1998
09
JAN 1999
12
FEB
03 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | DDE
DISSOLV
(UG/L)
(34653) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 | BACIL
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82665) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | | DEC 1998
09
JAN 1999
12
FEB
03
MAR
03 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 |
DDE
DISSOLV
(UG/L)
(34653)
<.006 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.018 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.0082 | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 | BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665)
<.007 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661)
<.002 | | DEC 1998
09
JAN 1999
12
FEB
03
MAR
03
APR
07 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.018
<.018 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.004
<.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.0082
.0602 | THIURON WATER FLITED 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 | BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665)
<.007
<.007 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661)
<.002
<.002 | | DEC 1998 09 JAN 1999 12 FEB 03 MAR 03 APR 07 MAY 05 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <-003 <-003 <-003 | DDE
DISSOLV
(UG/L)
(34653)
<.006
<.006
<.006 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
<.004 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.018
<.018
<.018 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 | PANIL WATER FITRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.0082
.0602
.0121 | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 | BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665)
<.007
<.007
<.007 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661)
<.002
<.002
<.002 | | DEC 1998
09
JAN 1999
12
FEB
03
MAR
03
APR
07
MAY
05
JUN
02 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 <- 0.003 < | DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 <.006 <.006 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.004
<.004
<.004
<.004 | METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018 <.018 <.018 <.018 | AMIDE WATER FLITED 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 | PANIL WATER FITRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.0082
.0602
.0121
.0124
.0119 | THIURON WATER FLITED 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 | BACIL WATER FITRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 | | DEC 1998
09
JAN 1999
12
FEB
03
MAR
07
MAY
05
JUN
02
JUL
01 | AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 | DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 <.006 <.006 <.006 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 | METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018 <.018 <.018 <.018 <.018 | AMIDE WATER FITRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 | PANIL WATER FITRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.0082
.0602
.0121
.0124
.0119 | THIURON WATER FLITED 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010 | BACIL WATER FLITRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002 | | DEC 1998 09 JAN 1999 12 FEB 03 MAR 03 APR 07 MAY 05 JUN 02 JUL | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 <-003 < | DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 | METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 | PANIL WATER FITRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.0082
.0602
.0121
.0124
.0119
.0131 | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | BACIL WATER FITRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 <.007 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.002 <.002 <.002 <.002 <.002 <.002 <.002 | | DEC 1998
09 JAN 1999
12 FEB
03 MAR
03 APR
07 MAY
05 JUN
02 JUL
01 AUG | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DDE DISSOLV (UG/L) (34653) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METON, WATER, DISS, REC (UG/L) (04037) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | PANIL WATER FITRD 0.7 U GF, REC (UG/L) (82679) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.0082
.0602
.0121
.0124
.0119
.0131
.164 | THIURON WATER FLITED 0.7 U GF, REC (UG/L) (82670) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | BACIL WATER FITRD 0.7 U GF, REC (UG/L) (82665) <.007 <.007 <.007 <.007 <.007 <.007 <.007 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)
(82661) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | # 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued # TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 | DAY | MAX | MIN | MEAN | |---|--|------------------|--|---|---|---|--------------------------------------|---|---|------------------------------|-----------|------------------------------| | | | OCTOBE | R | | NOVEMBE | R | | DECEMB | ER | | JANU | JARY | | 1 | | | | | | | 8.5 | 6.5 | 7.5 | .0 | .0 | .0 | | 2 | | | | | | | 7.5 | 5.0 | 6.0 | .0 | .0 | .0 | | 3 | | | | | | | 8.0 | 6.0 | 7.0 | .5 | .0 | .0 | | 4 | | | | | | | 10.5 | 8.0 | 9.0 | .5 | .0 | .0 | | 5 | | | | 6.5 | 3.5 | 5.0 | 11.0 | 9.5 | 10.0 | .5 | .0 | .0 | | 6 | | | | 6.0 | 3.5 | 4.5 | 11.0 | 9.0 | 10.0 | .5 | .0 | .0 | | 7 | | | | 6.5 | 3.5 | 5.5 | 12.5 | 10.0 | 11.5 | .5 | .0 | .0 | | 8 | | | | 7.5 | 6.0 | 6.5 | 12.0 | 10.0 | 10.5 | .0 | .0 | .0 | | 9 | | | | 8.5 | 6.0 | 7.5 | 10.0 | 6.0 | 8.5 | .0 | .0 | .0 | | 10 | | | | 8.0 | 5.5 | 6.5 | 6.0 | 4.5 | 5.5 | .0 | .0 | .0 | | 11 | | | | 10.5 | 8.0 | 9.5 | 5.5 | 3.5 | 4.5 | .5 | .0 | .0 | | 12 | | | | 8.5 | 6.0 | 7.0 | 4.5 | 2.0 | 3.5 | .5 | .0 | .0 | | 13 | | | | 8.0 | 6.0 | 7.0 | 5.0 | 3.5 | 4.5 | .5 | .0 | .0 | | 14 | | | | 8.0 | 5.5 | 6.5 | 4.5 | 2.0 | 3.5 | .0 | .0 | .0 | | 15 | | | | 9.0 | 6.5 | 7.5 | 3.0 | | | .0 | .0 | .0 | | | | | | | | | | | | | | | | 16 | | | | 8.0 | 5.0 | 6.5 | 3.5 | 1.0 | 2.0 | .5 | | .0 | | 17 | | | | 9.5 | 7.0 | 8.0 | 3.5 | 2.0 | 2.5 | .5 | .0 | .0 | | 18 | | | | 8.0 | 6.0 | 7.0 | 3.0 | 1.0 | 2.0 | 1.0 | .0 | .0 | | 19
20 | | | | 7.0
9.0 | 4.5
6.5 | 6.0
8.0 | 3.5
5.5 | .5
3.5 | 2.5
4.5 | 1.5
3.0 | .5
1.0 | 1.0
2.0 | | 20 | | | | 3.0 | 0.5 | 0.0 | 3.3 | 3.3 | 4.5 | 3.0 | 1.0 | 2.0 | | 21 | | | | 8.0 | 6.0 | 7.0 | 7.0 | 5.0 | 6.0 | 3.0 | 2.0 | 2.5 | | 22 | | | | 7.0 | 5.0 | 6.0 | 9.0 | 3.0 | 7.0 | 4.0 | 3.0 | 3.5 | | 23 | | | | 6.0 | 3.5 | 5.0 | 3.0 | .5 | 1.5 | 6.0 | 4.0 | 5.0 | | 24 | | | | 7.5 | 5.5 | 6.5 | 1.0 | .0 | .5 | 8.0 | 6.0 | 7.0 | | 25 | | | | 6.0 | 3.5 | 5.0 | .5 | 5 | .0 | 6.0 | 3.5 | 4.5 | | 26 | | | | 7.5 | 5.0 | 6.0 | .0 | .0 | .0 | 4.0 | 2.5 | 3.0 | | 27 | | | | 8.0 | 6.0 | 7.0 | .0 | .0 | .0 | 3.5 | 1.5 | 2.5 | | 28 | | | | 7.5 | 4.5 | 6.0 | .5 | .0 | .0 | 5.5 | 3.0 | 4.0 | | 29 | | | | 7.5 | 4.5 | 6.0 | 1.0 | .0 | .5 | 6.0 | 3.0 | 4.5 | | 30 | | | | 8.0 | 6.0 | 7.0 | 1.0 | .0 | .5 | 4.0 | 1.0 | 2.5 | | 31 | | | | | | | .0 | .0 | .0 | 3.0 | 5 | 1.0 | | MONTH | | | | 10.5 | 3.5 | 6.5 | 12.5 | 5 | 4.5 | 8.0 | 5 | 1.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUAR | | MAX | MIN
MARCH | | MAX | MIN
APRI | | MAX | MIN
MA | | | | | FEBRUAR | Y | | MARCH | | | APRI | ւ | | MA | ΔY | | 1 | 1.0 | FEBRUAR | y
.5 | MAX
 | | | 10.0 | APRII | L
9.0 | MAX
 | | | | | | FEBRUAR | Y | | MARCH | | | APRI | ւ | | M. | | | 1
2 | 1.0
3.5 | FEBRUAR | .5
2.0 | | MARCH | | 10.0
12.0 | 8.5
8.5
10.0
11.5 | 9.0
10.5
11.5
12.5 | | M2
 |

 | | 1
2
3 | 1.0 | FEBRUAR | .5
2.0 | | MARCH | | 10.0
12.0
13.5 | 8.5
8.5
10.0
11.5 | 9.0
10.5
11.5 | | M.P. |
 | | 1
2
3
4
5 | 1.0
3.5
 | .0
.5
 | .5
2.0
 |

8.0
5.0 | MARCH 3.5 2.5 |

6.0
3.5 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5 | 9.0
10.5
11.5
12.5
12.0 |

 | M2 |

 | | 1
2
3
4
5 | 1.0
3.5
 | .0
.5
 | .5
2.0

 |

8.0
5.0 | MARCH 3.5 2.5 |

6.0
3.5 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5 | 9.0
10.5
11.5
12.5
12.0 |

 | MP |

 | | 1
2
3
4
5
6
7 | 1.0 | .0
.5
 | .5
2.0

 |

8.0
5.0
4.0
4.5 | MARCH 3.5 2.5 3.0 .5 |

6.0
3.5
3.5 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5 | 9.0
10.5
11.5
12.5
12.0 |

 | M2 |

 | | 1
2
3
4
5
6
7
8 | 1.0 | .0
.5
 | .5
2.0

 |

8.0
5.0
4.0
4.5
2.5 | MARCH 3.5 2.5 3.0 .55 |

6.0
3.5
3.5
3.0 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5 | 9.0
10.5
11.5
12.5
12.0 | ====
====
====
==== | M2 |

 | | 1
2
3
4
5
6
7 | 1.0 | .0
.5
 | .5
2.0

 |

8.0
5.0
4.0
4.5 | MARCH 3.5 2.5 3.0 .5 |

6.0
3.5
3.5 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5 | 9.0
10.5
11.5
12.5
12.0 |

 | M2 |

 | | 1
2
3
4
5
6
7
8
9 | 1.0 | .0
.5

 | .5
2.0

 |
8.0
5.0
4.0
4.5
2.5 | MARCH 3.5 2.5 3.0 .550 |
6.0
3.5
3.5
3.0
.5 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5 | 9.0
10.5
11.5
12.5
12.0
11.0 |

 | M2 |

 | | 1
2
3
4
5
6
7
8
9
10 | 1.0 | .0
.5
 | 2.0
2.0

 | 8.0
5.0
4.0
4.5
2.5
2.5
3.5 | MARCH 3.5 2.5 3.0 .550 |
6.0
3.5
3.5
3.0
.5

1.0 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5 | 9.0
10.5
11.5
12.5
12.0
11.0 | | M2 |

 | | 1
2
3
4
5
6
7
8
9
10 | 1.0
3.5

 | .0
.5
 | 2.0
2.0

 |
8.0
5.0
4.0
4.5
2.5

3.5 | MARCH 3.5 2.5 3.0 .55555 |
6.0
3.5
3.5
3.0
.5

1.0 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5 | 9.0
10.5
11.5
12.5
12.0 | | MA |

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 1.0 | .0
.5
 | 2.0
2.0

 | 8.0
5.0
4.0
4.5
2.5

3.5
3.5
4.5 | MARCH 3.5 2.5 3.0 .550 .05 |

6.0
3.5
3.5
3.5

1.0 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5
9.0 | 9.0
10.5
11.5
12.5
12.0
11.0 |

 | M2 |

 | | 1
2
3
4
5
6
7
8
9
10 | 1.0
3.5

 | .0
.5
 | 2.0
2.0

 |
8.0
5.0
4.0
4.5
2.5

3.5 | MARCH 3.5 2.5 3.0 .55555 |
6.0
3.5
3.5
3.0
.5

1.0 | 10.0
12.0
13.5
15.0
14.5 | 8.5
8.5
10.0
11.5
10.5 | 9.0
10.5
11.5
12.5
12.0 | | MA |

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1.0 | .0 .5 | 2.0
2.0

 | 8.0
5.0
4.0
4.5
2.5

3.5
3.5
4.5 | MARCH 3.5 2.5 3.0 .550 .055 |
6.0
3.5
3.5
3.5

1.0
1.0
1.5 | 10.0 12.0 13.5 15.0 14.5 | 8.5
8.5
10.0
11.5
10.5
9.0 | 9.0
10.5
11.5
12.5
12.0
11.0
 |

 | M2 |

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1.0 | .0
.5
 | 2.0
2.0

 | 8.0
5.0
4.0
4.5
2.5
2.5
3.5
3.5
4.5 | MARCH 3.5 2.5 3.0 .550 .05555 |
6.0
3.5
3.5
3.0
.5

1.0 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0 | 9.0
10.5
11.5
12.5
12.0
11.0
 | | MP | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1.0 | .0
.5
 | 2.0
2.0

 |
8.0
5.0
4.0
4.5
2.5
2.5
3.5
2.5
4.5 | MARCH 3.5 2.5 3.0 .550 0 .0 1.5 |
6.0
3.5
3.5
3.5

1.0
1.0
1.5
 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0 | 9.0
10.5
11.5
12.5
12.0
11.0
 | | M2 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1.0
3.5

 | .0
.5
 | 2.0
2.0

 | 8.0
5.0
4.0
4.5
2.5
2.5
3.5
3.5
4.5 | MARCH 3.5 2.5 3.0 .550 .05555 |
6.0
3.5
3.5
3.5

1.0
1.0
1.5
 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0
 | | | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | 1.0
3.5

 | .0 .5 | 2.0
2.0

 | 3.5
3.5
4.5
3.5
3.5
4.5
3.5 | MARCH 3.5 2.5 3.0 .550550 1.5 3.5 |
6.0
3.5
3.5
3.5

1.0
1.0
1.5
 | 10.0 12.0 13.5 15.0 14.5 | 8.5
8.5
10.0
11.5
10.5
9.0 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | M2 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 1.0
3.5

 | FEBRUAR .0 .5 | 2.0
2.0

 | 3.5
4.0
4.5
2.5

3.5
4.5
4.5
7.5
7.5 | MARCH 3.5 2.5 3.0 .550 .0550 1.5 3.5 4.0 3.5 |
6.0
3.5
3.5
3.5
3.5

1.0
1.0
1.5

1.5
3.5
5.5
5.5 | 10.0 12.0 13.5
15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | M2 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 1.0 3.5 | .0 .5 | 2.0
2.0
 | 8.0
5.0
4.0
4.5
2.5

3.5
2.5
4.5

3.5
5.55
7.5
7.5 | MARCH 3.5 2.5 3.0 .550 .0 1.5 3.5 4.0 3.5 3.5 |
6.0
3.5
3.5
3.5
3.0
.5

1.0
1.0
1.5

1.5
3.5
5.5
5.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 1.0
3.5

 | FEBRUAR .0 .5 | 2.0
2.0

 | 3.5
2.5
3.5
2.5
4.5
2.5
3.5
3.5
4.5

3.5
7.5
7.5 | MARCH 3.5 2.5 3.0 .550 .0 1.5 3.5 4.0 3.5 3.5 3.5 3.5 |
6.0
3.5
3.5
3.5
3.0
.5

1.0
1.0
1.5

1.5
3.5
5.5
5.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | M2 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 1.0
3.5

 | FEBRUAR .0 .5 | y .5
2.0

 | 8.0
5.0
4.0
4.5
2.5

3.5
2.5
4.5

3.5
5.55
7.5
7.5 | MARCH 3.5 2.5 3.0 .550 .0 1.5 3.5 4.0 3.5 3.5 |
6.0
3.5
3.5
3.5
3.0
.5

1.0
1.0
1.5

1.5
3.5
5.5
5.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0
 | | M2 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 1.0
3.5
 | .0 .5 | 2.0
2.0

 | 3.5
3.5
3.5
3.5
4.0
4.0
4.5
2.5

3.5
5.5
7.0
7.5
7.5
7.5
7.5
7.5
7.5 | MARCH 3.5 2.5 3.0 .550550 1.5 3.5 4.0 3.5 4.0 3.5 3.5 3.0 2.0 |
6.0
3.5
3.5
3.5
3.5
1.0
1.0
1.5

1.5
3.5
5.5
5.5
5.0
4.0
3.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | M2 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 1.0 3.5 | .0 .5 | 2.0
2.0
 | 3.5
3.5
3.5
3.5
3.5
4.5

3.5
5.5
7.0
7.5
4.5
7.5
7.5 | MARCH 3.5 2.5 3.0 .550 -0550 1.5 3.5 4.0 3.5 4.0 3.5 3.5 4.0 4.0 4.0 | 1.0
1.0
1.5
3.5
5.5
5.5
5.5
5.5
5.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | M2 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 1.0 3.5 | FEBRUAR .0 .5 | 2.0
2.0
 | 3.5
4.0
4.0
4.5
2.5

3.5
4.5
4.5

3.5
5.5
7.5
7.5
7.5
7.5
7.0
7.5 | MARCH 3.5 2.5 3.0 .550 .0 1.5 3.5 4.0 3.5 3.5 4.0 3.5 4.0 3.5 3.5 3.0 4.0 4.0 | 1.0
1.0
1.0
1.5
5.5
5.5
5.5
5.5
5.5
5.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27 | 1.0 3.5 | .0 .5 | y .5 2.0 | 3.5
2.5
3.5
2.5
4.5
2.5
3.5
3.5
2.5
4.5

3.5
7.5
7.0
6.0 | MARCH 3.5 2.5 3.0 .550 .05551 .0 1.5 3.5 4.0 3.5 3.5 3.0 2.0 4.0 4.0 3.5 3.5 | 1.0
1.0
1.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | M2 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 1.0 3.5 | FEBRUAR .0 .5 | 2.0
2.0
 | 3.5
4.0
4.0
4.5
2.5

3.5
4.5
4.5

3.5
5.5
7.5
7.5
7.5
7.5
7.0
7.5 | MARCH 3.5 2.5 3.0 .550 .0 1.5 3.5 4.0 3.5 3.5 4.0 3.5 4.0 3.5 3.5 3.0 4.0 4.0 | 1.0
1.0
1.0
1.5
5.5
5.5
5.5
5.5
5.5
5.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 1.0 3.5 | FEBRUAR .0 .5 | 2.0
2.0
 | 3.5
4.0
4.0
4.5
2.5

3.5
2.5
4.5

3.5
5.5
7.0
7.5
7.0
7.5 | MARCH 3.5 2.5 3.0 .550 .0550 1.5 3.5 4.0 3.5 4.0 4.0 4.0 3.5 5.0 | 1.0
1.0
1.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | M2 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 1.0 3.5 | FEBRUAR .0 .5 | 2.0
2.0
 | 3.5
4.0
4.5
2.5

3.5
2.5
4.5

3.5
5.5
7.5
7.5
7.0
7.5
7.5
7.0
6.0
7.5 | MARCH 3.5 2.5 3.0 .550 .0 1.5 3.5 4.0 3.5 3.5 3.0 4.0 4.0 4.0 | 1.0
1.0
1.0
1.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5 | 10.0 12.0 13.5 15.0 14.5 13.5 | 8.5
8.5
10.0
11.5
10.5
9.0
 | 9.0
10.5
11.5
12.5
12.0
11.0

 | | | | # 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued # TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 | DAY | MAX | MIN | MEAN | |-------|------|------|------|------|------|------|------|--------|------|-----|-------|------| | | | JUNE | | | JULY | | | AUGUS! | r | | SEPTE | MBER | | 1 | | | | 23.0 | 21.0 | 22.0 | 28.5 | 25.0 | 26.5 | | | | | 2 | | | | 25.0 | 22.0 | 23.5 | 28.5 | 22.5 | 25.0 | | | | | 3 | 23.5 | 20.0 | 21.5 | 26.5 | 21.5 | 24.0 | 27.0 | 21.0 | 23.5 | | | | | 4 | 23.0 | 18.5 | 20.5 | 28.5 | 23.5 | 26.0 | | | | | | | | 5 | 22.5 | 17.0 | 19.5 | 30.5 | 24.5 | 27.0 | | | | | | | | 6 | 23.0 | 17.0 | 19.5 | 30.5 | 25.0 | 27.5 | | | | | | | | 7 | 25.0 | 19.0 | 22.0 | 29.5 | 24.5 | 26.5 | | | | | | | | 8 | 26.5 | 21.0 | 23.5 | 26.5 | 21.5 | 24.0 | | | | | | | | و | 26.5 | 21.0 | 23.0 | 26.5 | 20.0 | 23.5 | | | | | | | | 10 | 22.0 | 19.0 | 21.0 | 24.5 | 21.5 | 23.5 | | | | | | | | 11 | 23.0 | 17.0 | 20.0 | 25.0 | 19.0 | 21.5 | | | | | | | | 12 | 20.0 | 16.5 | 18.5 | 20.5 | 18.5 | 19.5 | | | | | | | | 13 | 20.5 | 19.0 | 19.5 | 23.5 | 18.5 | 20.5 | | | | | | | | 14 | 22.0 | 19.0 | 20.5 | 21.5 | 19.0 | 20.5 | | | | | | | | 15 | 24.5 | 20.0 | 21.5 | 25.0 | 17.5 | 21.0 | | | | | | | | 16 | 22.5 | 18.5 | 20.0 | 26.5 | 20.5 | 23.5 | | | | | | | | 17 | 20.0 | 17.5 | 18.5 | 28.5 | 22.0 | 25.0 | | | | | | | | 18 | 20.5 | 16.5 | 18.5 | 28.5 | 23.0 | 25.5 | | | | | | | | 19 | 21.5 | 15.5 | 18.5 | 28.0 | 23.5 | 25.5 | | | | | | | | 20 | 19.0 | 17.0 | 18.0 | 25.0 | 23.0 | 24.5 | | | | | | | | 21 | 18.0 | 17.0 | 17.5 | 25.0 | 21.5 | 23.5 | | | | | | | | 22 | 21.5 | 15.5 | 18.5 | 25.5 | 22.5 | 24.0 | | | | | | | | 23 | 23.5 | 17.5 | 20.0 | 28.5 | 23.0 | 25.0 | | | | | | | | 24 | 24.0 | 18.5 | 21.0 | 27.0 | 23.5 | 25.0 | | | | | | | | 25 | 23.0 | 18.5 | 21.0 | 28.5 | 23.0 | 25.5 | | | | | | | | 26 | 25.0 | 20.0 | 22.5 | 28.0 | 22.5 | 25.0 | | | | | | | | 27 | 25.0 | 21.5 | 23.5 | 28.5 | 22.0 | 25.0 | | | | | | | | 28 | 25.5 | 23.0 | 24.0 | 28.0 | 22.5 | 25.0 | | | | | | | | 29 | 26.5 | 23.0 | 24.5 | 26.5 | 22.0 | 24.0 | | | | | | | | 30 | 24.0 | 21.5 | 22.5 | 27.0 | 22.0 | 24.5 | | | | | | | | 31 | | | | 28.5 | 23.0 | 26.0 | | | | | | | | MONTH | 26.5 | 15.5 | 20.5 | 30.5 | 17.5 | 24.0 | | | | | | |